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EQUATIONS OF POWERED ROCKET ASCENT
AND ORBIT TRAJECTORY

1. INTRODUCTION

In the analysis of systems in space, one often encounters the problem of specification and
design of a launch vehicle and its trajectory, so that certain performance requirements may be
met. Also of interest are the flight path of the space vehicle in orbit, particularly with respect
to interactive ground systems, and the relation of the orbit to the launch profile. As will be
explained below, however, it is usually difficult to extract the requisite information from vari-
ous standard references. This report should help to remedy this situation. One of the primary
goals of this report is to present a logical exposition of approximations and sufficient informa-
tion and guidance to facilitate an investigator's choice of the simplest analysis technique suited
to his needs. He may thus possibly be able to avoid an unnecessarily complex, time-consuming
analysis technique, such as the "full” numerical solution approach to the problem.

In many standard reference sources on powered rocket ascent fiom the earth, equations
are introduced in an ad hoc and incomplete manner. There are also inaccuracies and incon-
sistencies to contend with. For example, Ball and Jsborne’s Egs. (1-20) and (1-22) {1] leave
out certain kinematic terms which are related to a radial gravitational field and could become
important for high rocket velocities. Ehricke [2] correctly introduces the effect of these terms in
his £q. (5-27) in an ad hoc fashion, but then he seemingly incorrectly introduces thzir effect
later in his Egs. (6-39) and (6-40), also in an ad hoc fashion. Ruppe [3]} gives a basically
correct treatment of these terms in his Egs. (3.1)-(3.4), but from the outset his treatment
ignores the orientation or angle of attack of the vehicle through his use of a gravity tili condi-
tion. Furthermore, Ball and Osborne {1] give a sketchy trestment of earth’s rotation effects, in
which an initial rocket velocity imparted by earth’s rotation is included in a flat earth approxi-
mation. Ruppe [3] does a more complete job on this, but his results are also restricted to a flat
earth. In most instances a powered rocket ascent will not cover a large enough ground range to
necessitate taking curvature of the earth into account, but in sume cases it will. To cover these
cases, where ground range might be in excess of 500 n.mi., a correct treatment of earth’s cur-
vature effects is necessary, but it is absent from the references that have been discussed {1-3].

This report is intended is to remedy the above deficiencies and present in one place, in a
consistent notation set, and in reasonably coherent fashion the basic equations of powered rock-
et ascent and orbit trajectory needed for analysis technigues at various levels of approximation.
To start with, in the first part of Section 2, we obtain the rocket equations of motion in an iner-
tial frame. As in nearly all elementary treatments, the complications from the fact that the at-
mosphere is not stationary in an inertial reference frame are initially ignored. In the latter part
of this section these equations of motion are integrated to give velocity and coordinate expres-
sions as a function of time in an inertial frame. In Section 3, we consider the complications of

Manuscript submitted August 29, 1978.
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earth’s rotation, including the effect of a corotating atmosphere. A “full" solution of the rocket
trajectory would thus involve a complicated three-dimensional numerical solution of the equa-
tions of motion. In Section 3 it is shown that the great complications which arise from this
cours~ of action can be avoided by solving simplified equations of motion in the earth-fixed,
rotating reference frame for the period of powered rocket ascent when acrodynamic effects are
important; the data are then transformed back to the inertial frame, which atnounts to addition
of a rotation velocity vector; and finally the inertial velocities computed as in Section 2 for por-
tions of the rocket flight when aerodynamic effects are not important are added. The results of
Section 3 demonstrate that approximate velocily and coordinate expressions for rocket flight can
be obtained by a rather simple extension of results from Section 2. The expressions in Section
3 will be found to include, to a good approximation, iiot only earth and atmosphere rotation
effects, but ailso earth’s curvature effects for the tot.l powered trajectory. In Seclion 4 the
nature of the elliptical satellite orbit and its point of entry, as determined from the injection
conditions which exist at cutoff of the rocket engines, are considered. In Section 5 the pro-
cedures are described for determining the vehicle flight coordinates versus time in both
powered and orbital phases, and as seen by both inertial and earth observers. In Section 6 there
is a discussion of the equations obtained and their underlying validity.

2. POWERED ROCKET ASCENT NEGLECTING EARTH'’S ROTATION EFFECTS

The Equations of Motlon

The coordinate system used to describe rocket motion is shown in Fig. 1. The forces on
the rocket are the thrust force of the engine, gravity, and aerodynamic forces. As in most ele-
mentary treatments [1-3), we assume inilially that the atmosphere is stationary, so that aero-
dynamic forces on the rocket arise purely because of the rocket motion. Actually, the atmo-
sphere corotates with the earth to a first approximation, but for large faunch vehicles this turns
out to have consequences of only secondary importance for rocket motion [3]. We do, how-
ever, include this as one of the rotating earth effects in Section 3. With the assumptiom of a
stationary atmosphere and an axially symmetric rocket in our inertial framr, the simplest case
of rocket motion will be planar and conveniently describable in circular coordinates (see. Fi3.
1), because of the radial nature of the gravitational field and the spherical earth. The effects of
earth's rotation will be disregarded for now, but will be included in Section 3. Shown in Fig. 1
are the radius vector r from the center of the earth to the satellite, its associated altitude y, the
angular displacement from 'aunch ¢, which gives the ground range x when the radius of the
earth R is factored in, the flight path angle of the center of mass of the rocket ¢ with respect to

the local horizontal (or "heading®), and the angle of attack a of the rocket axis with respect to
the flight direction.

For a = 0 in Fig. 1 the only aerodynamic force on the symmetric rocket will be a drag
force opposite to the flight direction. If one defines drag D and lift L aerocynamic forces for
a # 0 as being antiparallel and pecpendicular to the flight direction, it is found for small a that
L is linearly proportional to a nad that the correction to D is approximately quadratic in « [2].
Unlike Ehricke [2] and Ruppe [3], Ball and Osborne [1] unconventionally refer drag and lift
direction to the rocket axis of symmetry (or "roli"* axis). In Fig. 2 we indicate a force diagram
for the rocket and include a brief description of the symbols. We use the standard assumptions
found in many references [1-3):

)
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- === VEHICLE CENTEALINE

T =< FLIGHT DVAECTION (CENTER OF MASS)
S LOCAL (ORIZONTAL

® -~ CENTER OF GRAVITY L ~ LIFT

O -~ CENTER OF PRESSURE W — WEIGHT

v — FLIGHT PATH HEADING £, - VECTOR FROM CENTER OF GRAVITY
@ ~ ANGLE OF ATTACK TO CENTER OF COMBUSTION

T -~ THRUST FORCE f2 - VECTOR FROM CENTER OF GRAVITY
£ — ANGLE OF THRUST TO CENTER OF PRESSURE

DO - DRAG

Fig. 2 — Force diagram for the rocket with symbol legend

® the aecrodynamic forces act through the center of pressure,
¢ the force of gravity acts through the center of gravity, and

® the thrust force is applied through the *center of combustion”.

One may utilize the Lagrangian method in this problem, suitably generalized to include
the presence of nonconservative forces [4). A brief review of this approach is included in
Appendix A. In Appendix B this method is applied to the present problem in finding the

Lagrangian L and generalized nonconservative forces.
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Lagrange's equations are found as
d 8L _o _,
3¢ O¢
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;
!
$

whete ¢, = 7, ¢, and ¢ in turn. Their evalustion yields

Fordl +K/P = (L/M)cosy ~ (D/M)sin g + (T/M)sin (@ +a+B), (D
1 ré+2ié=~(L/IM)siné ~ (D/M)cos$ + (T/MYcos (W +a+@).and  (3) j
] la =il cosa + Dsinal - ,T sin 8. @ i
l In effect, Ball and Osborne (1] leave out the term ré?in Eq. (2 and a term ¢ ¢ in Bq. 1
(3) in their Eqs. (1-20) and (1-22). (Note that 7, r@® cotrespund to their y, 1). Equations (2) 1
and (J) are the equations of moation for the rac.al and anguiar coordinates of the center of R
1 mass, and Eq. (4) applies 10 the coordinate a for the internal motion {cf. Fig. 1). The center of
3 mass Eqgs.. (2) and (3), in which we are particvlarly interested, can be manipulated as follows. 3
We have for the velocity of the center of mass: ;
7 ré = v cos $, t = viin g, ($) i
1 s0 that :
g Ve Pal :
3
g Differentiating this relationship and using equations 2), (3), and (5), we obtain ;f
‘ vo =i+ e+ rdli i
i {ré! — K/t + (L/M) cos ¢ - (D/M) sin ¢ + (T/M) sin (b + a + 8)} |
] +ré (= 2/é = (L/M) sin ¢ ~ (D/M) cos  + (T/M) cos (b + a + )] + ré7 ;
? = vsin ${= K/r? + (L/M) cot ¥ - (D/M) sin § + (T/M) sin ( + a + )] H
+ v cos ¥ |~ (L/M) sin ¢ = (D/M) cos ¥ + (T/M) cos (¥ + a + B). 9
;
Combining terms, we have

ve - (K/A) sing = (D/M) + (T/M) cos (a + 8). (6)
Thie can also be written as
(6"

v = (T/M) cos Bcosa— (D/M) — (K/r?) sinw - (T/M) sin 8sin «,

and this is the form of Ehricke's Eq. (5-23) [2). To obtain the equation for ¢, we differentiate

Eq. (5):
Veos $ — v (sin $)P = id + rd.
Hence, .
~ K . D, T Ny ]
v(ain*)\b--r:smﬁ-u-i»ucos(ni»p) cos $ — id , .
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+2i6+-&ﬂno+%mo-—5m(o+a+p).
Combining terms and usirg Eq. (S), we have
v‘--[%-!}lm&*-%ﬂn(ﬁ*ﬁ“'%. m
This can be written as
v&-{'-eocnsina-ﬁ-%+—Ealnpma-i-§-!”—lmo. m

which corrasponds to the form of Ehricke's Eq. (5-27) [2). The derivation of Eqs. (6) and (7)
is very similar to Ruppe's procedure for obtaining his Eqs. (3.3) and (3.4) [3).

The first level of simplification. which is analyzed elsewhere (2,3], results from the fact
that for the large launch vehicles of interest here. 8 << a, 50 that the equations of motion
simplify to

v =(K/PR)sing - (D/M) + (T/M) cos a and ®
v& = - [(K/r’) (v’/r)l cosy + (L/M) + (T/M) sin a. C))

Another great simplification results when onc finds (2,3} that the increase of thrust at higher
altitudes is approximately cancelled by the drag effect in the calculation of cutoff conditions.
Small a is normally a requirement when aerodynamic forces are a factor (e.g., for first-stage
motion or altitudes loss than 60 km). Under these conditions the lift can be written as in Ref.
2

L =C, Spv/2=dC./8) a S pv/2, (10)

where S is a reference cross-sectional area of the vehicle, p is the atmospheric density, and
8C,/8a is a constant deterinined from wind-tunnel esting. Hence, at this level of
simplification,

v —(K/rVsiny + (T/M) cos « (an
and

v = ~ [-—— - L lcosw + ~-—{l + e(;'“ -e-v-}lsm a, (12)

one can do relatively simple calcalations. Small « ascent is desirable from the standpoint of
laurch officiency, i.e., minimum fuel expenditure for accomplishing the mission [2,3]. Thrust
is cond.dered to be a constant in Eqs. (11) and (i2), with

T=Myv,. 13)
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Here v, is the effective speed with which exhaust gases are ejected relative to the nozeie exit
P aperture (3], and Af is the raie at which exhaust mass is ejected. One simplified, approximate
provedure for aquations (11) and (12} is to: (a) assunie a programmed Jdeflection funclion ¢(1)
for the various lsunch vehicle stages, which results in correct orbit entry conditions at burnout,
(b) solve Eq. (11) by integration, and (¢} compute angle of attack from (12). The last step in
this procedure is simply to check the assumption of reasonably small a used in oMaining Eqs.
(11) and (12). In this context a is given as the solution of

! . My + M (K/e) 1L = vi/R) cos ¢
. - . 0
3 una T 11+ QC, /3a) Savi/2T “

This equation turns out 10 be identicat to the result derived by Ehricke (cf. his Eqs. (6-40), (6-
42), and (6-50)), excey for the square-bracketed term in Eq. (14), which Ehricke refers to as a
centrifugal ioad factor [2]. He introduces this factor in an ad hoc fashion, and he apparently
incorrectly replaces v in this facior by v cos 8. Ehricke shows that for a large winged rocket
vehicle the term enclosed in braces in the denominator substantially roduces angle of attack a
: beneath its vacuum value, particularly {or the first stage of the launch vehicle .. .

i

v Wk Ml el 1 o il i,

RS

bl b o

Normally, a is small in first-stage motion when aerodynamic effects are impourtant, but
can be fairly large in higher stage motionr when aerodynamic foices are insignificant, depending
on required otbit injection conditions, The presence of the cos a term in Eq. (11) can thus be

E important for higher stages.
3
i‘ Integrtion of the Equations of Metisx j
3 ;
E We follow Ehricke's notation {2] in integrating Eq. {11) for a particular siage of a multi- 3
1 stage rocket vehicle. We introduce 1, as the burn duration of the st 3¢ and the normalized 1
: time variable £ for that stage: {
= l/'p as
Here § varies between 0 and 1. During this time, mass varies as
um.-(u,—un/u”-\—%-\-u\, (16)
(1]
|
where }
A= MM, = W,/W, an

i3 s paramater which 1s given as the weight of propellant for that stage divided by the initial
voight of ihe launch vehicle at that stage. if we astume small angles of attack, such that cos
o = 1, and normalize ths vehicle speed 10 the exit speed of the exhzust gases, i.e., define

i .

: X = V,V'. (18) N

? we find esily (of. Bq. 15-24) in Ref. [2]) that 1
{ AV/v, = &x B x ~ x, = =In(l — §A) = (A/n) (1), (19) i

whare n, 8 the thrust-to-weight ratio
n,=T/M,g{R)=T/W,, (20)

where g(r) = K/r® is the acceleration of gravity, and

AR O i it O A
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¢ N .
up = f f((n—) sin $d¢ . 20
Here & varies from its vatue at the beginning of the particular stage. which is the same as ils
cutofll value at the end of the preceding stage lintermediate coasting can be included as a
separate stage), to its value at the particular time according to a well-defined prescription for
¢(¢). Ehncke uses a deflection program such that ¢ vanishes at § =0 and | and ¢ = 0 at
€ = 1 {2]. This is not necessarily optimum. The integration in ¥g. (21) is performed by a sim-
ple numerical method, and so x(§) in Eq. (19) is determined at the particular § mesh points
selecied for the numerical integration. Ruppe (3] gives a procedure for obtaining analytic
renuits. Then from Fig. | and Eq. (5), altitude and ground runge are determined from

¢
Y=y =vy L X sin $d¢
d¢ = R(¢ - 9,). 22)

i
3
§
!

¢ R
.\'-.t.-v,l,J: X COsS ¥ R+

From Eq. (14), the angle of attack is found from
? . _
l—k;l ll - _V__LI l]——-—ﬂ cos&' +40-¢0 13
r K n, i d‘
na = :

£ Bt 1.

A
3)

'+ 3 T

The initial parameters x,. x,. and y, f{or the particular stage in Question are the same as the ;
N cutoff values tor the preceding stage. For the very first stage n, = ), = 0, and we would use :

x» = 0 in our calculations. We should reiterate, however, that earth’s rotation effects have not i
been included. Fourtunately, the zdditional complicatizas caused by their inclusion do not A 1
present unsurmounishle problems, as we will attempt to demonstrate in the next section

e b i deas L

si
' aC; Spv?

3. INCLUSION OF EARTH'S ROTATION ;

The preceding equations would be valid in an inertial frame of reference if all effects of a
rotatitig earth could be excluded. One effect of a rotating earth is to impart an initial velocity to
the rocket at launcti. If this were the only effect, this velocity could be simply vectorially added

i to the velocities found in the preceding section and integrated to give a correction to altitude

! and ground coordinates. There is another effect, however, the earth's atmosphere corotates , ]
with the earth 10 a first approximation (disregarding the ordinary winds experienced by an earth :
observer). If the atmosphere were stationary in an inertial reference frame, an earth observer ,

: would he subiected Lo consaant wind speed of 903 cos L knots, where L is the terrestrial latitude j

: ! of the observer. This suggests that an exact solution of the rocket problemt might profitably be :

carried out in & frame of rference which rotates with the earth, at least while aerodynamic

K i effects are important. This is the besis o an approximation suggesied by Ruppe 13]. For the '

sake of this discussion, we suppose that the first stage of our mullisiage rocker vehicle o

corresponds 10 the period of rocket flight when aerodynamic effects are impoiiant. Ruppe sug-

£ ' gests (3] that the equations of motion should be solved in the rotating reference frame (in

i which the atmosphere is stationaty) (or the first stage, that the results should be transformed

hack to the inertial frame of reference, and subsequent stages tr..'ed in the inertial frame,

since aeradynamic effects are unimportant for the higher stages. e transformation from the

rotating reference frame back to the inertial reference frame after cutoff of the first stage gives

e

el e

e Srakil
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Av) = Avy, + v, (24)

where Av, is the rocket velocity in the inertial frame after cutoff of stage 1, and Av,, is the
same velocity determined in the rotating reference frame. From the general theory of such
transformations (see, ¢.5., Ref. $)

v,-!;xr.aogkll + 4 cuLtmv2 (25)

R
where r, is the radius vector to the satellite, and y, its altitude after cutoff of the first stage.
The approximation indicated in Eq. (23) is associated with a *flat earth® approximation for the
first-stage motion in which the curvature of the earth is disregarded, so that L, is the latitude of
the launch point, and £ is a unit vector in the easterly direction at the time and place of launch.
This approximaticn, which is discussed later, is very often valid for first-stage motion, and for
the modest altitudes atiained, one sees that v, is approximately the velocity imparted to the
rocket at its launch point by earth's rotation in an inertial frame. The magnitude of w R is {S)
495 m/s (1524 Nt/3) = 903 knots. The true inertial velocity during the Ath stage is given by

V('| +h+ .+ ‘l.) my,+Avg + AV + - 4 (A")‘ Ev, + v. (26)

Here Av,(; > 1) is the velocity increment of the jth stage (computed as in the previous sec-
tion), and (Av,), is the velocity increment in the kth stage. The entity ¢, is the burn duration
time for the jth stage, and § is the reduced time variable which varies between 0 and 1 (cf. Eq.
(15)). We shall find Av,, later and justify that it and v’ in Eq. (34) are approximately coplanar,
just as in the previous section. But for now, we simply assume this fact and proceed tu carry
out the vector addition of v, and v' in Eq. (26). We do this with the help of Fig. 3, which
shows the planar motion represented by v and the vector v, drawn from the launch point in an
easterly direction. The orientation of the plane of v’ is specified by the azimuth angle a, meas-
ured from north (N) to east (E) at the launch point. The vector v' is specified by its magnitude
v’ and by its direction, which can be determined from a,, the heading ¥', and the ground range
angle ¢', all of which are indicated in Fig. 3. To facilitate the vector addition, we break v, into
a component v,, perpendicular to the plane of v' and a component v, , in this plane. Evi-
dently,

Vo1 ™V, CO8 a, and v, , = v, Sin a,. 2n

Hence, v can be specified as the sum of three perpendicular component vectors (shown in Fig.
4),

vev, +v, +v,, (28)

where v, is parallel to the radius vector from the center of the earth to the rocket, and v, is
perpendicular to it, but in the plane of v'. From the geometry in Fig. 4 it follows that

vV, =V cos ¥ + v, ,co8d,
v, = v'siny' + v, sing', (29)
and
ve v+ vl +vi V2
The true heading ¥ with respect to the local horizontal is given by
sin ¢ = v, /v, (30)

E
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EQUATOR

Fig. 3 — Vector orientations for inclusion of earth's rotation effects
in a fiat earth approximation for first stage (see test)

L.
|
|

| WITHOUT EARTH'S
ROTATION

HORIZONTAL PLANE

Fig. 4 — Vector diagram for inclusion of earth's rotttion in
flat earth approximation for first stage

In order to find the azimuth angle a for the vehicle flight path projectiun, we need to make use
of spherical trigonometry formulae. If we disregard the effect of nitial velocity from earth’s
rotation, we can relate the entities in Fig. 5 by the use of the laws of cosines and sines:

sin L' = sin L, cos ¢' + cos L, cos a, sin ¢’
sin @' = sin g, cos L,/cos L'
sin(/' — {) = sin a, sin ¢'/cos L'. @31

These account for the variations of latitude, azimuth angle, and longitude, respectively, in the
plane of v' [3]. Now from Fig. 6,

vysina'+v, cosa’ v,tana'+v,,
vyco8a' —v, sina v,—v, tana'’

(32)

tang =
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Fig. 6 ~- Vector diagram for azimuth angle determination 4.
teking into account earth’s rotation 3
We thus have completed the vector addition of Eq. (26). With the knowledge of v, ¢, and a, ;3
. we can determine the actual position of the space vehicle in an inertial coordinate system. We
] can describe these position coordinates as the altitude of the space vehicle plus the latitude and ':ij‘
3 longitude of its flight projection on the surface of the earth in an inertial geocentric-equatorial o o
3 coordinate system [S]. (In this system the latitude-longitude grid is fixed in space.) With S
X Ev/v,, (33)
we have
‘ 3
y—y.,-V.tnj: x sin ¢ d{’ ' :
€ xcos ¢ ' ,
L—-L,=v,t L R+y cos a d§ : ;
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1=, =v,t j:‘ xﬁf—f— sin a d¢' (34)

for the changes in altitude, latitude, and longitude during a particular burn stage of the rocket
vehicle. The parameters in the above integrals are evaluated for values of ¢ between 0 and £,

where £ = 0 is associated with cutoff of the preceding stage, and § = 1 is associated with
cutoff of the present stage.

The preceding expressions, particularly those which invoke the approximation in Eq. (25),
can be considered valid in a flat earth approximation for the first stage—the period of rocket
ascent when aerodynamic effects are significant. This approximation for any part of rocket
motion can be considered valid, for example, when ¢' can be disregarded, as in Egs. (29) and
(31). We note, for example, that a ground range of 500 n.mi. corresponds to ¢' ~ 8.3°. For
this value sin ¢' is only aboui 1/7 the value of cos ¢' = 0.99, so that sin ¢' = 0 and cos ¢' =
1 is an adequate approximation, particularly for the significant portion of rocket trajectory when
v' >> v,, Hence, as long as the first-stage motion covers a ground range of 500 n.mi. or less,
or ¢' < 10° we have a sufficient condition for the validity of the fiat earth approximation for
the first stage. This condition is very often satisfied by first-stage motion, although in our equa-
tions it does not have to be satisfied by higher stages of a multistage rocket.

It is possible to go beyond the flat earth approximation for the first stage, and we already
have done so in the statement of Eq. (25). The initial problem of using v, = wy X r; is that
we don’t know 1, ahead of time, since it is determined as a subsequent step based on the velo-
city determination. We have exploited a flat earth approximation to s.bstitute for r, a vector
from the center of the earth through the launch point. This allowed us to determine
v=v, + v, where v' was computed without the effects of a rotating earth. This itsell is only
an approximation for the contribution Avg, to v/, although we shall see later that it is quite a
good one. With v(r) determined, r(s) followed from Eqs. (27) through (34). Next, one may
choose to investigate the earth's curvature effect for the first stage by substituting r, from this
detsrmination into v, = @ X r, as the start of another iteration. The vector r, will be
specified by the inertial coordinates y,, L,, and /,. From then on, the computations of Egs.
(26) through (34) are repeated, with some modifications, in this new iteration. The
modifications are necessitated by the new orientation of the vector v,. The true flight path, at
least the one determined from the calculation which preceded the new iteration, is shown in
Fig. 7 aiong with other data which will be used to determine the aforementioned modifications.
Also shown is the flight path for v'. The easterly direction at (L, /) is the same as that at
(L. 1). We will use the given information about the spherical triangle ABC in Fig. ?
(namely, the two angles /| — I, and a, and included side »/2 — L,) to determine azimuth angle
a, and ¢,, which is the angular distance in the plane of v' associated with the first stage. These

calculations will specify the orientation of v,. From standard spherical trigonometry formutae
[1), we have

cotl-’-;— - L,'l slnl-!;— - L,l - cos[-;l - L,,l cos(/y = 1,) + sin(/) - 1,) cot a,

or
tan L, = (cos L,)"! [sin L, cos(ly — },) + cot a, sin{/, — L,)]. . (3%)
which determines L,; then
sin ¢, = sin(/; — })) cos L/sin a, (36)
11
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Fig. 7 — Flight path projeciion on nonrolation latitude-fongitude grid.  The
dingram makes poxsiblo the inclusion of sarth's rotation and earth's curvature
for the first stage,

determines ¢,. Azimuth angle a, is found from Eq. (31):

sin a, = sin a, cos L,/cos L,. an

Now the modifications of Eqs. (27) through (34) consist of the following:
Voy ™V, co8 @, and v,y = v, sina, — 8
which replaces Eq. (27) —
vy = V' cos ¥ + v, cos(d — &),
v, = v'sin¢' + v, sin(¢d ~ ),
and
v vl +vievi\2, (39)

which is used instead of Eq. (29); the other equations are unchanged. The new iteration will
result in new velocities and positions, which may be made the basis of another iteration, if it is
noecessary 1o satisfy convergence criteria.
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It remains now to specify Avg, in Eq. (26). It is well known (e.g., see Ref. §) that
transformation from an inertial to the rotating frame of refercnce is accompanied by the addi-
tion of effective Coriolis and centrifugal forces in the equations of motion; i.e. [5],

dvg/dt = dvgldi —2wg X Vg~ wg X (@e X 1),

where the subscripts R and F refer to rotating and inertial frames, respectively. When
expressed in rotating frame coordinates, the aerodynamic forces associated with the first term
on the right properly depend only on rocket motion. The latter two terms are Coriolis and cen-
trifugal terms. We estimate in Appendix C how iarge the vejocity contributions from the vari-
ous forces might typically be for 4 large rocket vehicle at cutoff of the first stage (1-3]. In order
of decreasing values, we find Avy: Avg: v, Avp: Avg,,: Av,,,, = 1000: 309: 150: 50: 10: 1.5,
where we list, in order, effects of thrust, gravity, iniiial velocity from earth’s rotation, drag
(which is approximately cancelled by thrust increase due to ambient pressure decrease [2,3)),
Coriolis force, and centrifugal force. These estimates 'indicate the conclusion that the principal
effect of a rotating earth is to add in the velocity v, as prescribed in Eas. (25) and (26) and dis-
cussed subsequent to these equations. The Coriolis and centrifugal contributions appear to be
very small, so that Avg, could be approximated quite well by the approach of Section 2, which
disregards the effects of a rotating earth and atmosphere.

The preceding results notwithstanding, one may wish to improve the specification of
Avpg,, particularly if computational simplicity can be preserved. The accuracy can be improved
if we include only the component of velocity effect from Coriolis and centrifugal forces in the
particuiar plane of motion which is associaied with the disrcgard of rotational effects. To illus-
trate the mathematical point that this is a good approximation for the smali correction from
Coriolis and centrifugal terms, let us consider what happens in Egs. (29) and (30) when ¢' =0
and v, << v'. In Eq. (29) we have

Vo ?
vir

and in Eq. (29) sin ¢ = v'sin ¢'/v. In these equations only the componeni v,, enters in first
order for v and ¢. The only first order correction involving v, that can be found is in the
determination of « in Eq. (32), and this is not important. Hence, along with Ruppe [3], we
transform to the rotating frame coordinates in Eqs. (2) and (3) by setting

&‘&R"":o'

oll

_ v
v= [vZ 4+ 2v'v,, cos ¢ + v ]V2 =vi|l + 5 cos ' +0

where
¢, = g cos L, sin a,

When Eq. (40) is substituted into Egs. (2) and (3), and the steps which led to Eqs. (6) and (7)
are redone, it is found that

VR = —l% - r¢3] sin ¢ — -—1‘?!- + _Al{ cos(a + B) 41)
vknb-—[—g-;—r&}—!%— cos¢+—:7sin(a+ﬁ)+-f{-—+2vx b, 42)

where

v = (AVRI)‘.
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The symbol (Avg)); has been defined in connection with Eq. (26). Onc now sces additional
Coriolis and centrifugal terms in the equation of motion. In the same way that Eqs. (11) and

(12) were obtained, one finds

Vp = —[% - r¢§] sin ¢ + O);IT:- cos a (43)
Vaw ::-—[-5- - r¢l - !-’&-l cosy + -L—.ll + 9;—:— f_;_’_;_‘l_ sin a + 2vpdb,. (44)

In terms of a programmed deflection function ¢(¢), one obtains the angle of attack a
from
Mvpa(y —20) + MK/ [1 = vir/K = r'é}/K) cos ¢
sina = . (45)
T {1 + (8C,/8a) Spv}/2T)

The solution for v, is found as in Eq. (19). Itis

X' = va/ve = xo1 = In (1 = §A) = (A/n,) (1), (46)
where £ and A are given by Egs. (15) and (17), respectively, and
n, = T/Mog' (R) = T/ W, . “n
Here,
g(r) = K/rt = rdd = g(r) - r} (48)
is an "apparent” acceleration of gravity and
(VATE j;( -gx,%% sin ¢ d§'. (49)

As indicated previopsly, the centrifugal correction to gravity is only a few tenths of a percent.
For the first stage xo = 0 and, from Eq. (39), we should include the initial condition

v(0) = 23, (first stage) (50)

in our programmed deflecticn function. This is similar to the conclusion reached by Ruppe (3.

Since wg = 7.292 x 10~5 rad/s, it is seen that y(0) in Eq. (50) is of the order of § x 10~?
deg/s, which corresponds te 1° in 200 s. Similarly, R¢o is on the order of 10°2 m/s?. These
are evidently very small correciions, in accordance with our previous estimates, 3o that Avy, in
Eq. (24) and v' in Eq. (26) could be computed to a good first approximation as if there were no

earth's rotation effects.

The computational procedurs for relatively simple analyses of powered rocket ascent is
now clear; it nyay be summarized as follows. The most significant part of the rocket trajectory
is assumed to be above the atmosphere and associated with second and higher stages, with
vo << V', 30 that for any quaiitaiive analysis one may ignore earth’s rotation effects. For this
purpose, one uses: (a) a programmed deflection function ¢(¢) [2,3); (b) a thrust given by Eq.
(13) with correctly chosen exhaust velocity v, (3,61, (c¢) Eqs. (15) through (22) for the velo-
city, altitude, and ground range of the rocket in all stages, where r = R {3 an expedient approxi-
mation for low altitude rocket flights and analytic results [3]; (d) Eq. (23) for checks on the
smaliness of the angle of attack; and (e) Eq. (31) for the determination of earth’s curvature
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4

effects in the computation of latitude, azimuth angle, and longiwude of the rocket flight path
projection on the surface of a nonrotating earth (hence, an inertial latitude-longitude grid). 1f
the conditions warrant a flat earth approximation, as determined by the ground range calcula-
tion (e.g., if ¢' € 109, then step (e) can be dispensed with. Also, il the approximation r = R
has been made in step (c), one may improve these results by starting with them in another 4
¥ iteration of step (¢) without the approximation,

s o b A

If one wishes to improve quantitaiive accutacy by taking earth's rotation effects into
; account, he should find the following summary useful. One could start with the results in the
g preceding paragraph and simply add in v, to the previous velocities v as in Eq's. (25) and (26),
where r, was determined in the prcvious results. Actually, to be consistent, one should
redetermine the first-stage results of the preceding paragraph with the use of Eqs. (45) through
(50). There probably will be no appreciabie differences from the previous first-stage results
obtained without regard for earth's rotation effects, but the resuits should at least be checked.
¥ If a flat earth approximation is valid for the first stage, one computes component and total
! speeds from Eqs. (27) and (29) with the approximation in Eq. (25), heading ¥ from Eq. (30),
and azimuth angle a from Eq. (32). The primed entities in these oquations are known at this
point, having already been computed. The altitude and flight path projection are computed,
presumably through numerical integration, in Eq. (34). If a flat earth aproximation is not valid
: for the first stage, one computes component and total speeds from Eqs. (38) and (39), where
a, is substituted for a, (primed entities are knuwn). Heading, azimuth angle, aititude, and
flight path projection are again determined from Eqs. (30), (32), and (34). These results can
then be used as the start of another iteration for obtaining greater accuracy in the inclusior: of
earth's rotation effects when the flat earth approximation for the first stage is not sufficiently
accurate. The description of this iteration procedure is included in the pearagraph which
includes Eqa. (35) through (39). It is expected that no more than one iteration would be
required. Even one iteration might not be worthwhile in view of the basic approximations we
have made regarding thrust and aerodynamic effects. The computations are greatly simplified if
a flat earth approximation can be made for the total powered rocket trajeciory. All that would
be required for a complete specification of orbit injection conditions (described in the next sec-
tion) is the altitude calculation from the preceding paragraph, with possible alterations which
might arise from Eqs. (46) through (50) for the first stage and simple vector addition of veloci-
ties, a3 in Eqs. (25) and (26). One could start the other way around, however, with desired
orbit injection conditions (v, ¢, and @) and obtain the launch profile conditions (v', ¢', ay
needed to obtain them, here v' and ¢' are rocket burnout parameters. This method is explained
in Appendix D.

EIRRE T ST AP

SRR |

”~

PP

B mar: LI W ISR

Finally, if one wants complete quantitative accuracy regarding all the effects we have
mentioned—or if one has sufficient information about aerodynamic effects and other factors of
the system, such as drag and lift coefficients, a model atmosphere, thrust variability, etc., and )
wants to include these effects in his analysis—he may achieve this in a full numerical solution o
i to the problem. The discussion of Kooy 6] is particularly helpful in this regard. Rocket velo- _
: city and coordinates can be straightforwardly obtained by Kooy's procedure [6] in a geocentric \
! equatorial coordinate system by a Runge-Kutta integration method. The conversion of these :
1 results to latitude, longitude, azimuth, altitude, and heading variations is simple, and is dis-
i cussed in the next section. Kooy's method appears to be Quite feasible, as well as accurate,
with the usc of modern computers.
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4. ORBIT TRAJECTORY FROM INJECTION
) : CONDITIONS AT ROCKET BURNOUT f%

e

At the end of powered rocket ascent (i.e., "burnout”) the payload is assumed to enter an

1 elliptical orbit above the earth’s atmosphere in the spherical gravitational field of the earth. 14
f This satellite motion thus satisfies (in an inertial frame)

‘ ¥+ (K/P)r=0,

e

16 i (n.mi‘)’ . ‘ :
where K = 1.407645 x 10 -sj-e-;; > 6.275 x 10* -—-s—e-c-z—— is the same parameter as used pre- 3
viously (see, e.g., Eq. (2)). The small corrections in the equation of motion due to the oblate ;

earth, acrodynamic drag, etc., can be handied by the techniques of perturbation theory {1}, but i

will not be included in the present report. Dotting Eq. (51) with t and integrating with respect i
to time, one obtains an energy constant of the motion E

E = v¥/2 - K/r. (52) "

Similarly, vector multiplying Eq. (51) by r and integrating with respect to time, one obtains an
angular momentum constant of the motion:

B s
_—-Twﬂ-,;nyngr\tﬁWW‘ T

o AT

h=rXxr (53

“Jence, the motion is planar. Now if one vector multiplies Eq. (51) by h and integrates it with
f , fespect to time, one finds [1,5)
3

I T R OISR

r
Zte
.

ixhwk . (54)

S
’ where e is a vector integration constant, If we define @ as the angle between e and r, the dot
, product of this equation with r yields the orbit equation {1,3}

3
3 C
-17 - {;(l + e cos 8), where e = 1+ 2—5—'5'* (59)
is the eccentricity of the orbit. Fig. 8a shows the elliptical orbit circumscribed about the earth .
centered at one of the foci, and Fig. 8b shows an associated vector diagram. Also shown are i
several parameters used in discussing the ellipse and the motion of the satellite, The parame-
ters r,, r,, / and a are the perigee, apogee, latus rectum, and semimajor axis lengths, respec-
tively; their values can be derived from Eq. (55). The angle 8 is measured from the perigee
vector (in the direction of e), as shown in Fig. 8b, and the ve'ocity and heading of the satellite
are shown in a manner consistent with their previous use in this report. From the relation

dar _ . dQ/i -
o h-——-—-—-—-d 0 v sin ¢ (56)

and Eq. (55), one obtains [1]

e sin @ = (rv¥/K) sin ¢ cos ¢

e cos & = (rv}/K) cos?y — 1. (57
These are useful relations for many purposes, dut we use them here for an unambiguous deter-
mination of the injection angle 8, and eccentricity e in terms of the injection conditions 7, v,,

and ¢, at burnout. The motion of the satellite in orbit is thus determined from injection condi-
tions, Eq. (55}, in which

16
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: 4
Ew=v¥2—K/r, and h =1, v, cos ¢,, (58) y 3
} and the expression for the time 1,(8) it takes a satellite to travel within one revolution from b
§ perigee to the angle 8. This is [1] E
. 12 " EI
3 a 1-e 0 e(l —eHVsin g 3 3
- | — -1 —f - ) Ft E}
! 4, (0) I Kl {2 tan”H| 7] tan 7 T e cos @ (59) * :
‘ Hence, for example, the time it takes to travel from 8, to @ is g ‘3
13, — 0) = 4,(8) - 4,(0)). (60) I
The only other thing we need to know is the orientation of the ellipse with respest to the P ﬁ
earth in an inertial coordinate system. This can be specified from the vector directions of h and ! i
e, which are determined from injection conditions. Hence by
he= K XxXYv,, (6‘) : ;_,
and from Eq. (52) . ;
—l_ -— :'_ - .l_ 2 —K_ - . 62) "t
o= F Vi X h ; X "v, . l r-(rv) v,l. ( :
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The inertial coordinate system, which we have previously mentioned, is the geocentric-
equatorial system [1.5] in which a latitude-longitude grid is superimposed upon the surface of
; the earth, but, unlike the conventiona! latitude-longitude grid which rotates with the earth, this
: grid is fixed in space and coincides with the conventional grid at the time of launch of the
f rocket from the earth. The latitude and longitude changes in Egs. (31) and (34) are under-
stood 10 be relative to this space-fixed latitude-longitude grid. A picture of satellite motion in
the geocentric-equatorial system is shown in Fig. 3. The Cartesian coordinate directions /, J,
; {unit veciors) form a right-handed set, with X pointing north (perpendicular to the equatorial
: plane) and [ pointing in the vernal equinox direction of the sun. A vector V has Cartesian
components {(¥,, ¥,, V,) in this system or components (¥,, V4. V) in the associated spheri-
cal coordinate system. This vector can also be represented in circular perifocal [5] coordinates

associated with the orbital plane (see Fig. 8) as (V,, V,, V,), where #is in the direction of h.
The transformation between the latter two coordinate dystams is

F=} (63)
dm—cosa®+sinag d

fmix@=—sina®-cosad,

. sk i
- et m;a».".&m.hu&h@-ﬂww

where a symbol with a caret denotes a unit vector in the direction indicated. Here angle ¢ in
Fig. 9 is the azimuth angle of satellite motion, as described previously. The angle 8: is the co-

latitude of satellite motion, i.e., in torms of latitude L 3
®=w/2- L. (64) 3

where L > 0 in the northern hemisphere and L < 0 in the southern hemisphere. To com- i

plete the transformation 10 Cartesian coordinate axes J, J, K, we use the expression for the 3
azimuthal angle @ L
k 3
4 =0, 0+ 65) %
L ) where @, (0) is the azimuth of the Greenwich meridian at the time of rocket launch. The long- !7 4
itude of the satellite I is positive if it is east of the Greenwich meridian, negative if west. Now i
from simple trigonometry, 1
b X (NORTH) 1
4 . 3
E ; D SATELLNE g
] 5
‘ LINE OF NODES i
é. A

Fig. 9 — Satellite motion in the geocentric-equatorial
coordinate system
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PecosLcos® ) +cosLsin®J) +sinl R
O=sinLcosd®/+sinLsin ®J-cosL R
Se-sindl+cosd) (66)
This completes the orthogonal transformations between the above coordinate systems. Hence,
for exampl: from Eq. (63)
= [~ sin a sin L cos ® + cos a sin @) |
+(-sinasinL ®~cosacos® ) (67
+sinacos L K,
which can be calculated from the oibit injection conditions for a, L, and
Also shown in Fig. 9 are other angles used to describe the orientation of the ellipse in the

geocentric equatorial system. These are the inclination i, the longitude of the ascending node

1, and the argument of perigee B. The inclination angle is the angle between R and h, found
from Eqs. (63) and (64) to be

cosi m$ - Rm—-3sina® R =sinacoslL. (68)

In general, 0 € / € » radians, but this equation restricts inclination angles to the range
ILl € i € w — |L|, depending on a. For inclinations 0 € i < w/2, we have generally east-
erly motion, or so called "direct” orbits [5). For #/2 < i € w, we have "retrograde” orbits |3).
If we define the line of nodes as a line from the center of the earth through the point of cross-
ing of the satellite through the equatorial plane, and if the unit vector 4 has this direction, then

A= (K x$)/sini
-;i-‘l;—':lcochosaF+sinLcosaé-—sianina$l. (69)
This ¢rn be evaluated from orbit injection conditions.

Bolore we can finish the specitication of i end 2, we shall need to calculate e from Eq.
62):

0-'1;Vxh—?-

vh - _yh
X o8 ¥ lli Ksm¢6

F+%sinwlcosaé—sina6). ()]

which can b ¢vuluated from orbit injection conditions. For Q1 one obtains
cosQ =i -Ja@in) '] - (Rx3)w—(sini)':- ]

vh -
[Kcost 1

- ;“l‘-; [sin a sin L sin ® + cos a cos ®], (T1a)

where 0 € 1 € 2w rad in general, but
Q<wifd-J>o0
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or its equivalent, if

’ i-1>0.

b Hence, from Eq. (67) ,
O <wif~sinesinl cos®+cosasind >0. (71h) .

; One also obtains from Eqs. (6%) and (70)

T Ty

cosB=c'A e

| 1 L N vh
A edni{cosl.cosa[xcosw 11 +sinl Ksin*,. (722)

where 0 € & € 2w in general, butife- R >0, 8 < v ie.

§

ﬂ<rif[-‘%’-cos&—llsinL—-vxisintcosacoal.>0. (72v)

3 ; Al the entities in Eqs. (68) through (72) are calculable from known orbit injection conditions,
i ' and the specification of the elliptical orbit is complete. For simplicity, one might choose to set

®, (0) =0 and & = / in the preceding expressions, which smounts to a redefinition of the /
and ] directions.

et ezl o bl dar

S. VEHICLE FLIGHT SEEN BY INERTIAL
AND EARTH OBSERVERS

wadlie < s

In Sections 2 and 3 the functions for the inertial frame, L(¢), (1),
y(0), a(t), v(1), and ¢(1), were specified for rocket flight. In Section 4 additional informa-
tion was derived to specify these entities for the orbital flight. We shall specify the first three

of these along with the counterpart functions Lg(r), /z(r), and yp(1) which describe what the
earth observer sees.

It is very simple to deal with the period of powered rocket ascent, i.e., the time frame
0 £t €1, where ¢ is the time after launch to burnout or orbit injection. In Section 3 we
have discussed the computation of altitude, latitude, and longitude in an inertial frame, i.e.,

y{1), L(1), and (1), respeactively, during this time period; the solution for yg (¢) and Ly (1) is
thus also found, since

o A T AT sl s

g s s e L

.VR(I) -y(t). Lp(l) - L(1). (73)
The function /g (¢) is simply found from ]
R = 1(0) - wgt, ) S
where ,
wg = 7.292 x 1073 rad/s = 15.04 deg/h; (75)

see Eq. (35) and [1.5).

T L YRR

For the time [frame ¢ > ¢, the satellite is in the elliptical orbit trajeciory discussed in the
preceding section. The angle 8 in Fig. 9 is increasing in the direction of motion of the satellite,
by definition, so a computational grocedure is tc pick a set of increasing ¢ values, starting with

T RE S S TS



e

NRL REPORT 8237
‘ 1 8, determined from Eq. (57) end arbdit injectivi conditions, and to delermine an associated set
§ : of times from Eqs. (59) and (60), starting with ¢ = ¢. From gpherical trigonometry formulae !
b on the right spherica! triangle ABC in Fig. 9, the law of sines determines latitude L (¢) = Lp(¢)
3 ; at these times (rom !
f : sin L1 = sin i sia [8 + 0], (76) ;
F i
E : where 0(1) is given, and g8 and / have previously been computed from orbit injecton conditions i
] by Eos. (68) and (72) A cotangent formula [1] determines /() 2t these times from |
E an () + @,(C) — N} = tan (8 + 8(N) cos ¢, an ! i
: i

; where () is determined from injection conditions by Eq. (71), and 4 (¢) is given by Eq. (72). ‘ i
[ Finally, altitude y (1) is determined from the known orbit in Eq. (53) by the formula : ;
3 P = (1) = elO(D) = R(D, (¥ )] i
1 where R(#) is the radius of the earth, which can be taken as approximately constant, and ; ;
E ! r {0(1)] for the orbit is given by Eq. (35). i
E : 6. DISCUSSION
F In Sections 2 and 3 this report develops the equations required for an analysis of powered
q i rocket trajectory. Most of the effort has been concentruted on the approximations which permit
the simpler analysis techniques, the approach (0 the more complex, completely quantitative
1 i numerical methods, however, has at least been indicuted. The computational procedures for ;
l-‘ H various levels of simplicity and approximation are delieated by summary discussions near the i
- : end of Section 3. The investigator can thus choose the precedure which fits his needs. Tt was j
] ) recognized that a radial gravitaiional fleld introduces centrifugal terms in an inectial frame, ;
1 , terms ‘which are omitted from some literuture sources or given incorrectly. A systematic pro-
1 ; cedure for taking carth's rotation effects (including atmosphere corotation) into account was

also Jdescribed, a subject often treated incompletely in the literature. Perhaps the most

significant contribution of this report is the treatment of earth's curvature effects and how the
carth's rotation effects are integrated with it in the simpler analyses of powered rocket trajec-
tory. The literature treatments of approximate analyses of powered rocket trajectory, at least
those seen by the author, stay within the confines of the Qlat-carth approximation; this approxi-
mation is discussed in Section 3. The full numerical solution of the rocket problem {6] does
typically include earth's curvature effects.

Vot i e itde s s

One of the major approximations of simpler analysis techniques of powered rocket trajec-
tory is the cancellation of drag and thrust increase effects. This approximation appears to be
Quite good for many rockets (2,3], i.e., within 2% for strategic choice of the constant thrust
value for each stage [3]. For large rockets, however, the thrust increase offect is expected to

o By st T MENRE WA o T

ik T b 2 b

more than counterbalance the drag effect, 50 that one may wish to include these effects expli- ' '
citly for greater quantitative accuracy. The simplification from constant thrust is then lost from q
the analysis, but it is eliminated anyway when angles of attack become large, as they frequently
do in higher stage motion. One may then wish 10 solve equations (8) and (9) in Section 2, or i
equations (10) and (11), by numerical integration (c.g.. by the Runge-Kutta method). 1Infor-
mation about thrust increase and aerodynamic effects is included in Appendix E. For somewhat 1

greater understanding and control of the launch trajcctory, one may wish (o assume a profile
a(r) for the angle of attack and solve for the flight path heading ¢ and for speed in the course
of the numerical interaction, a job suited for a computer. Previously, we had suggested, for
simplicity, an assumed $(¢) profile in the calculations. -
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Section 4 relates the rocket burnout parameters obtained in Sections 2 and 3 to the
specification of the elliptical orbit subsequently traversed by the payload and to the point on this
orbit where it is injected. The equations are developed somewhat more clearly and completely

than usual here, and it is hoped that the orbit determination part of the trajectory analysis is
thus facilitated.

3
3
E
¢

In Section $ the trajcctory coordinates of the powered rocket ascent and orbital flight are 1
determined as the altitude and the latitude and longitude of the flight projection on the earth’s
1 surface as a function of time after launch. Two cases are considered: (1) the trsjectory as seen
: by a heavenly, inertial observer on a space-fixed latitude-longitude grid on the earth, and (2)
i the more important case of the common earth-fixed ocbserver who rotates underneath the orbit
and sees the rocket and payload from a different perspective. Actually, the first case is just
1 obtained as an intermediate step to the determination of the second case.

e il B bt

There are other perturbations which have not been considered in this report, such as the
3 : effect of the oblate earth, variations in aerodynamic forces, solar radiation pressure, etc. (1]
f Some of these effects alter the long term orbital motion of satellites, which is of no particular
2 consequence for many simple analyses or for this report, which concerns itself with powered
b rocket ascent and short-term orbit motion. Variable winds on the rocket are assumed to be
corrected for in flight as part of the vehicle steering control.
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Appendix A
LAGRANGIAN METHOD, INCLUDING THE PRESENCE OF
NONCONSERVATIVE FORCES

A system of particles is effectively in cquilibrium under the influence of all applied and
inertial forces. The applied forces may be further classified as conservative (derivable as the
negative gradient of a scalar potential) or nonconservative. We may define the forces as fol-

%g
i

hiakied
1,2 3 PRI PRI | WL N | A W ke b

lows:
] ay, . : ;

E F, = -—a;—: Conservative force on i'th particle
E F: Nonconservative force on i'th particle q
: —mX;: Inertial force on i'th particle. (A1) S
: Newton's equation of motion is :
% F,+F —m¥ =0, (A2) g
! here restated as particle equilibrium under all three kinds of forces. Since each particle is in :
%' { effective equilibrium, an arbitrary, infinitesimal, virtual displacement of all the particles will 3
! involve no work. This is known as d’Alembert’s principle of virtual displacements. Hence 4
! T(F, + B - mX,) - 8x, = 0. (A3)
Because of constraints in the problem (e.g., boundaries, rigid body constraints of the particles, §
elc.), particle motion will depend on a smaller set of coordinates (e.g., angles of rotation, the 3
; center of mass coordinates, etc.), which are referred to [4] as independent generalized coordi- E
: :‘ nates ¢, ..., q,. Hence,
j X = l,-(ﬂ]. Q0 e qf)a (A4) :
3 § 1 t,
F ! Therefore, 3
: i,-i,-(q.. N T8 é|, ...q',). (A6) ; .V‘
One obtains e ‘
(1) (X3 o‘l ;

| zm:‘i'a!i-zzml‘l'a—aﬂ

; i i J L/ =
]

df, o) . 4 0x
iz,z""ldrl"‘ 3| @ aqj}"’

d 3 aiI . azxi .
refth B pat
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di 8 | . ox, .
= | ) — - —_— 3
‘ d‘laq; 422 mx; lzmle agq, [kz % kl q

It is also true that
1/
TF-bx - }:,—-5—’—-3::,-2-4:11,-—2-59—(}:(1,]“,
i X, ] ; o4

!

and
. . 9x;
zF,' 'Bxi-zzF,"'é—'qu.
i{ i J qf
Hence, if we include the kinetic energies and conservative forces in the Lagrangian L as
L( DY qjl q.j: vae ) - z[';_ m;x.'[z - ljl( sy qjt e )lp (A7)
i
where X, is determined by differentiating Eq. (A4), then Bq. (A3) can be written ss
d oL 9L
; dt 34, dq, w] ¥
where
. B, (A9)

defines the generalized nonconservative force associated with the coordinate g;. Since the g,
coordinates are independent and the displacements 8¢, are arbitrary, each of the square brackets
in Eq. (A8) vanishes, and we therefore obtain Lagrange’s equations suitably generalized to

include nonconservative forces.
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] Appendix B i
2 i
b 4
DERIVATION OF THE LAGRANGIAN AND GENERALIZED FORCES 1
E' FOR THE ROCKET PROBLEM ; i
L |
E ' The coordinate variables which can vary independently in the problem are the coordinates l 3
E (r, $) of the center of mass and the angle of attack a. Now (
E x,=r+p, (B1) '
” where r is the radius vector to the center of mass and p, is the vector displacement from the ‘ R
. center of mass to the / th particle mass element in the rocket. The kinetic energy Tis given by 3
T-%Zm,(ité,)’-%m-u z-%-m,ﬁ,2+ lr 3
i i :

but since ¥, m, i =0 by definition of the center of mass, the last term vanishes. Conse- %

: i 4
quently, we have the familiar separation of center of mass motion from internal motion. Now . ‘ﬁ;}
- 1. 1 .. 1 . .
3 ; ? "'ll’i2 - ; '5' '"i[?_xﬂ/]z - ; 2 m; €, a;, (), € mn a,(p), ) :
' 1 . A
E - 2 ? ’"l(akm 8in — B4 alm) ay Ay (PI)I (Pl)n 'z
S :
E _ ; X mlay b, py Py ~ au & Py pu ]
/ "R

T{ . ,,-‘!
1 -%- a1-a, where I=3 mlp?l —pp]l é
3 d - 3
E In this case of planar motion, where & = &£ (z direction normal to plane), I = ¥, mp?. 3

Hence,

T= -;- MG + 1) + % 1a (B2)

il o
SR L T T
RSP ETI BRT

The only conservative force in the problem is gravity, which can be related to a potential:

mK mK MK ;
Fom—=g h=-=g =L U=-7" SR

Hence, the appropriate Lagrangian which includes conservative forces, is _
L-1 MG+ 74D + L ja2 4 MK (gee Bq. (AT)). (B3) .

The nonconservative forces are distributed over the mass elemems:

L- ZLI. D- ED“ T- ZT/.
i i i
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From Fig. 2
F=SW+D+T) L asp)=@+n+m
i

=L cosy - Dsiny + Tsin(y +a+p8). (B4)

Similarly,

o —~Lsiny—Dcoty+ Tcos(y +a+p8)r (BS)

Finally,
Fom DL +K+T) L v p)
i [+

8p, = 2 sin 3a/2 (2 % p,(a)] = Balf x p,(a)]
F; - 2([4, <+ K, + T;) * [f x_e,".

Now we use the information that lift and drag act as if concentrated at the center of pressure
and thrust acts as if localized at the center of combustion:

Foea(L+D)-(IxX1)+T -(Exl)=hiLcosa+Dsinal -/, Tsing. (B6)
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Appendix C f
: VELOCITY INCREMENT ESTIMATES FOR VARIOUS EFFECTS ;ﬁ
' IN FIRST-STAGE ROCKET MOTION
The ideal velocity (i.e., from thrust only) of a large rocket at first-stage cutoff [1-3] could
be estimated (e.g., see Eq. (8) of text) as E
' — Y
; ve= [ ' (T/IM)ar = (T/MD)L,, (cn \
; — ¥
4 where 1, is the burn duration of the first stage, and M is an average mass. The gravity loss ’ ;
: 3 from this velocity is 3
1 Avg == g1, = 0.3(T/M)1,, (€2 .
i 1 )
. where we indicate a 30% gravity loss [2). Now Av; might be == 3050 m/s, so that Av g = 900 P
: m/s. The drag loss from Av is probably == 5% overall, although the drag force can reach a §
; maximum of about 25% of the thrust force during the first-stage motion (2]. {3
, Hence, : é
' Avp = 150 m/s = 0.05 Av;, (€3 . i
" ! which is almost canceled by thrust increase due to ambient pressure decrease in the ascent g
: [2,3). By comparison we have a relatively |arge value [S] of velocity imparted by earth's rota- ; ot
s tion A Do
1 : Vo = wgR = 450 m/s = 0.15 Av;. (C4) ;
: ) We estimate the Coriolis effect as ’
L ] t - fh i
3. Ave, = L 2wgv df = 205(T/M) J; ¢ dt i
3 or ;
|
Ave,, == agpt) Avy = 001 Avy {eh}) ;
for a burn time ¢, somewhat more than 2 min. The centrifugal effect contribution is given as {
AVow = wi Rl == wptyv, == 0.0015 Avy. (€6) 5
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L §
é; ] DETERMINATION OF LAUNCH PROFILE PARAMETERS
FROM DESIRED ORBIT INJECTION CONDITIONS i
§ I IN A FLAT EARTH APPROXIMATION P
- § .
?g ! If we are given a set of desired orbit injection conditions, such as altitude y, rocket speed :
E : v, heading ¢, &nd azimuth angle a, we face the question of the launch profile condi''- as needed
iy f to obtain them. We design the rocket to attain the speed v' and y' at burnout " isregarding :
& ! earth's rotatic.:) for a final heading ¢', and need to determins the apparent launch azimuth a,. 5
% «E The relationship between these parameters is obtained with the heip of the vector diagram in :
f H Fig. D1. The notation used here his been defined in Section 3 of the text (cf. also Figs. 4 and 3
E i 6). The following results may readily be obtained. &
& ¥ {
N
{ 1
:
4§ H
} ; ¢
!
»
|
{ o
i Up }
, Fig. D1 — Vector diagram for determination of launch profile parameters ;i
; from desired orbit injection conditions (flat earth approximation) %
: A
| 1
! Vs v~ v = vy + vy = v, = {v] + (v = v, ) ‘
; = {v? ~ 2vv, cos ¢ sin @ + v3}\/2, (D1) ﬂ
! With v' thus determined, we use the following from Fig. D1:
sin @' = v sin y/v'. (D2) l =;
} ;
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This determines ¢, and now if we define
Aa=a-a, (D3)
and use the law of sines in Fig. D1,
sin Aa = v, cos a/(v' cos ¢'), (D4)
from which aq, is determined. Since v, is in the horizontal plane, we have
Y =y (D4)

A similar set of equations has been derived by Ruppe [3].
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Appendix E
THRUST INCREASE AND AERODYNAMIC EFFECTS

For a rocket with swivel cuntrol motors the total thrust includes pressure forces and is
normally presented [2,3,6] as

Te=Mv,+Alp. - p()), (E1)

where M is the mass loss rate of exhaust gases, v, is the actual average axial speed of these
gases relative to the rocket, 4 is the exit aperture area, p, is the pressure of the exhaust gases
at the exit aperture, and p(») is the ambient pressure of the atmosphere at altitude y. Nor-
mally, p(y) varies from p(o) to zero for first-stage motion, so that the thrust varies from its
sea level value T, to its vacuum value 7,,.. Hence, T;, and T, are usually given for the first
stage, and T, is given for the higher stages of a rocket. In effect the ratio

X = T,./T, (E2)
is given for the first-stage motion, and it is easily shown that (E1) can be rewritten as
_x=1 pQ)
T = T [1 oyl (E3)

Very frequently xis the range 1.12 to 1.15, and the increase of thrust with altitude is thus exhi-
bited.

As we have indicated in the text, drag tends to counterbalance the effect of thrust
increase. The aerodynamic forces of lift L and drag D are important in first-stage motion,
where angles of attack a are normally programmed to be small (e.g., @ "=" 3°). From (2] one
then has for the aerodynamic forces:

D= (CDO + CDL a’] (PV2/2) S
L = [8C,/8a) « (pv¥/D) S, (E4)

where p is the atmospheric density, v is the rocket speed, and S is an appropriate reference
cross-sectional area (e.g., that for the first stage) to which the aerodynamic coefficients are
referred. These coefficients for a two-stage rocket are shown by Ehricke [2] in his Fig. 5-8 as a
function of local mach number, which is the speed v divided by the speed of sound at the alti-
tude of the rocket. One may thus infer the acrodynamic forces from standard atmosphere data
and the aecrodynamic coefficients.
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